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silicides, germanides and water frameworks suggest 
that the area per vertex,/2, varies little as a function 
of the framework curvature, for a fixed framework 
composition (Hyde, 1993). 

From O'Keeffe's (1991) network classification, the 
average surface ring size for the minimal embedding 
of any network containing equivalent vertices (or, 
alternatively, the characteristic of the network, y) 
can be readily determined (Hyde, 1993). The area per 
vertex, /2, can then be deduced from (4) and (7). 
Where more than one type of vertex is present in a 
net, upper and lower bounds on the average surface 
ring size can be found. Fig. 3 shows the area,/2, of a 
range of silicon-rich zeolites, clathrasils and dense 
silicates, using standard data for the framework den- 
sity, assuming a distance of 3.05/k between the 
T-atom vertices. With the exception of the densest 
four-connected silicate framework, coesite, the 
frameworks exhibit approximately equal area per 
vertex, regardless of the curvature of the framework. 

These data are plotted with the maximum and 
minimum areas found according to (9) and (14) in 
Fig. 4. Geometrical considerations alone allow the 
areas to vary between these limits, under the assump- 
tion of quasi-uniform networks. Clearly, the weak 
variation of surface areas with silica-framework 
curvature is not due to the geometry of Euclidean 
three-dimensional space. Rather, this effect must be 
set by interatomic interactions at work within these 
covalent frameworks. 

I thank Professor Michael O'Keeffe for many 
stimulating discusssions. 
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Abstract 
The validity of the direct phasing and Fourier 
method for direct crystal structure determination is 
examined. It is shown that, while the kinematic 
approximation for electron diffraction is not strictly 
valid for all materials containing heavy atoms in real 
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space, many of the low-order diffracted beams 
behave kinematically for a small crystal thickness. 
For thin crystals, structure maps constructed from 
compound crystals containing heavy atoms using 
low-order reflections are found to be faithful rep- 
resentations of the crystal structures. The inclusion 
of high-order diffracted beams is shown, however, to 
introduce intensity maxima that do not coincide with 
atom positions. It is shown that, if dynamical phases 
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760 THE DIRECT PHASING AND FOURIER METHOD 

of the diffracted beams are available, as in the case 
of electron holography, an electron-density map 
using dynamical phases is a better map of the crystal 
structure than the structure map constructed using 
kinematic phases. 

1. Introduction 

It has been appreciated since the first years of elec- 
tron crystallography that electron diffraction by 
crystals is mainly dominated by multiple scattering 
events due to the very strong interactions between 
the incident electron beam and the crystal nuclei and 
electrons (Bethe, 1928). These strong interactions 
provide both advantages and disadvantages for the 
technique of electron diffraction. It is these strong 
interactions that enable good statistics to be obtained 
from submicrometre regions (down to 2 A). On the 
other hand, the strong interaction leads to the dyna- 
mical nature of electron diffraction and complicates 
the interpretation of electron diffraction experiments 
(Cowley, 1993). 

In principle, if the sample used in an experiment is 
thin enough, the first-order kinematic theory may be 
applied. If its validity is assumed, the diffracted- 
beam amplitude for the gth diffracted beam ~Tg is 
then given by 

,~rg OC Vgt, (1) 

where t is the sample thickness and Vg is the gth 
Fourier coefficient of the crystal potential: 

V(r) = ZVgexp( ig ' r ) .  (2) 
g 

In a diffraction experiment, such as an X-ray 
diffraction experiment, what we measure are 
diffracted-beam intensities rather than amplitudes. 
The phases associated with diffracted-beam ampli- 
tudes are lost. This is the outstanding phase problem, 
and a class of methods have been developed that 
attempt to derive the phases by mathematical means 
using only the intensity information (Woolfson, 
1961). In many cases, however, there exist several 
sets of phases that fit the diffraction intensities 
equally well. The solution returned by using the 
direct methods is therefore not unique. It sometimes 
takes the crystallographer's chemical intuition to 
know which of these may be correct (Dorset, 1991). 

For electron crystallographers, the situation is 
much more fortunate. If the diffraction experiments 
are performed in an electron microscope, an electron 
micrograph can be obtained from crystalline samples 
using a subset of diffracted beams. Essentially, an 
electron micrograph is an interference pattern 
formed by the selected subset of diffracted beams 
(Cowley, 1975; Spence, 1988). A Fourier transform 
of the electron micrograph then provides phases for 

the subset of low-resolution diffracted beams used in 
forming the image. With the assumption of a kine- 
matic diffraction situation, the method of phase 
extension may then be used to obtain phases of 
higher-resolution beams observed in a diffraction 
pattern and to construct a higher-resolution struc- 
ture map (Fan, Zhong, Zheng & Li, 1985). 

For biological and organic crystals, which contain 
mainly weak scatterers such as C, N, O and H 
atoms, the use of the kinematic approximation is 
well justified (Unwin & Henderson, 1975; Klug, 
1978/79; Dorset, 1991). Recently, however, applica- 
tions of the phase-extension and Fourier method 
have also been made to inorganic crystals. The effi- 
ciency and correctness of the method for inorganic 
crystals containing strong scatterers, such as Cu and 
Ti atoms, have been demonstrated (Fan, Xiang, Li, 
Pan, Uyeda & Fujiyoshi, 1991; Zou et al., 1993). 
This success is contradictory to the well established 
fact that for heavy atoms, such as Cu and Au atoms, 
electron diffraction by even a single atom is strongly 
dynamical (Glauber & Schomaker, 1953). This 
article aims to explain this apparent contradiction 
and to explore the factors that determine the validity 
of the direct phasing and Fourier method. In particu- 
lar, we are concerned with the complex compound 
C32N8C116Cu, which contains the heavy atoms Cu 
and CI. 

2. Dynamical diffraction and phase shift 

To a good approximation, the scattering processess 
by a single atomic potential may be understood using 
a phase-object approximation (Cowley, 1975). 
Within this approximation, the electron wave func- 
tion beneath an atom can be expressed as 

@(r) = @oq(x,y)= @oexp[itrq~p(x,y)], (3) 

in which 0o is the incident electron wave function, 
q(x,y) is the transmission function of the phase 
object, or is the relativistic electron interaction con- 
stant, which is given by or = 2rrmek/h 2, with all 
physical constants having their usual meanings, and 
Cbp(X,y) is the projected atomic potential in the beam 
direction. An analytical expression for the atomic 
scattering factor has been given by Doyle & Turner 
(1968): 

4 

p(s )  = • ajexp ( - bjs2), (4) 
j----I 

in which s = g/4~r, with g being the usual reciprocal- 
lattice vector, and aj and bj are fitting parameters. In 
terms of the Doyle & Turner fitting parameters, the 
atomic scattering potential for a high-energy electron 
is given by 

dp(x,y,z) = (hZ/2 ~-moe)(1/2 7r)3 ffe(g/4 ~') exp ( ig " r) dg 
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4 
= (h2/27rmo e) Z a j ( 4 ~ / b j )  3'2 

j = l  

x exp [-(4,n-2/bj)(.~+ y2 + z2)]. (5)  

The projected atomic potential along the z direc- 
tion is given by 

oo 4 

&p(X,y) = f c~(x ,y , z )dz= (2hZ/moe) Y (aJbj) 
-oo j = l  

x exp [ - (4rr2/bj)(x 2 + y2)]. (6) 

Using (3), we obtain the transmission function 
through a single atom 

q(x,y)  = exp[i~o(x,y)], (7) 

with 

= 

= 4~ra[ 1 + (eE/moc2)] 
4 

x ~" (aj /b j )exp[-(4rr2/bj) (x  2 +y:)], (8) 
j = !  

where E denotes the primary-beam energy. For a 
sufficiently light atom, we may take a further 
simplifying assumption that ~o << 1 so that (7) may 
be expanded to first order to give 

O(x,y) ---- Oo[ 1 + i ~0(x,y)], (9) 

this is the weak-phase-object or kinematic diffraction 
approximation. The maximum phase shift ~Oma x 
occurs at the nucleus site, i.e. at x=0 ,  y=0 .  An 
estimate of the maximum phase shift ~0(0,0) for a 
single atom can be made readily from (8), giving 

4 

q~max = 4 ,n-a[1 +(eE/moc2)] ~" (aj/bj). (10)  
j = l  

Using values of Doyle & Turner (1968) for the fitting 
parameters aj and bj, we obtain for a Cu atom 
~Omax(CU)= 1.35rad at 100keV and ¢Prnax(Cu)= 
0.858 rad at 500 keV. It is apparent, therefore, that 
the kinematic approximation is invalid even for a 
single atom of Cu at either 100 or 500 keV. The 
success of the direct phasing and Fourier method is 
clearly not a result of the validity of the kinematic 
approximation of electron diffraction in any rigorous 
sense. 

Shown in Fig. 1 are some one-dimensional plots of 
the phase function ~o(x,y) along the x axis, i.e. 
~o(x,0), for different primary-beam energies and tem- 
peratures. The calculations have been made using 
(8). It is seen that for all cases the kinematic approxi- 
mation that leads from (7) to (9) is violated near the 
nucleus site at ( x , y ) =  (0,0). It should be noted, 
however, that the phase shift ~o(x,y) is a sharply 
peaked function at the nucleus site that decays 
exponentially from the nucleus site (see Fig. 1). At a 
fraction of an ~mgstrrm away from the nucleus site, 

~0(x,y) becomes much smaller than unity and the 
kinematic approximation is then well valid. 

To further understand the situation as to how the 
kinematic approximation is broken down, it is useful 
to consider an analogous case of a classical collision. 
A collision in quantum theory is very different from 
a classic collision, for a quantum collision is essen- 
tially a wave phenomenon. However, if the atomic 
potential is sufficiently weak, a useful analogy to the 
scattering of a beam of classical particles by a central 
potential may be made (Messiah, 1972). In the classi- 
cal scattering theory, an electron travels on a hyper- 
bolic trajectory owing to the attractive Coulomb 
force between the electron and nucleus. The collision 
process is basically described by an impact parameter 
b, which is the nearest distance of the incident elec- 
tron from the centre of the nucleus. It is a general 
rule that the smaller the impact distance b is, the 
larger the scattering angle 0 will be. This fact sug- 
gests that essentially the large-angle scattering results 
from scattering events occurring in the area near to 
the nucleus. It is a corollary of this argument that the 
kinematic diffraction approximation is more likely to 
be broken down for a large-angle diffracted beam 
resulting from scattering events occurring near to the 
nucleus compared with low-angle diffracted beams 
resulting from scattering events occurring in a region 
that is distant from the nucleus. In other words, the 
low-index diffracted beams are more likely to result 
from single scattering events, while large-angle dif- 
fracted beams are likely to go through multiple 
scattering events. 

To place the above classic argument on a more 
rigorous ground, we expand (7) into a power series 

q(x,y)  = 1 + i ¢p(x,y) - ½ q 9 2 ( x , y )  - (i/6)~p3(x,y) + . . . .  

(11) 

The scattering amplitude from a phase object is 

1.4 , , , , , , , , , 

/ ~  lOOkeV,  T=O.OK - -  
I ] \  5 0 0 k e V ,  T=O.OK . . . . .  

1.2 

1 

o.8 

'~ o.~ &. 

0.4 

0.2 

0 = I i 
-1 -0.8 -0.6 -0.4 -0.2 0 0 .2  0.4 0 .6  0 .8  

x (~ngs t rom)  

Fig. 1. Calculated phase-shift profile q~(x) for a single Cu atom, 
100 and 500 keV. 
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obtained by a two-dimensional Fourier transform of 
the transmission function minus the incident wave: 

~kx ,ky )  = f [ q ( x , y ) -  1]exp[ -  i(kxx + k vy)]dxdy 

= i f ( k ) - ½ f ( k ) * f ( k ) - ( i / 6 ) f ( k ) * f ( k ) . f ( k )  

=Yl +w2 +J-3 + . . .  , (12) 

where the symbol * denotes the operation of con- 
volution and ~1, J2 and J3 represent contributions 
resulting from single, double and triple scattering 
events, respectively. In (12), f(k) is the two- 
dimensional kinematic or Born scattering amplitude 
of a single atom: 

f(kx,ky) = f ~ ( x , y ) e x p [ -  i(k~x + kyy)]dx dy 

= A[1 +(eE/moc2)] 
4 

x ~. aiexp{-[1/(47r)2]b,(k2 x + ky2)} 
i = 1  

(13) 

and the single scattering amplitude is related to f(k) 
via the relation 

Y, =/f(k). (14) 

The double and triple scattering amplitudes are 
given by 

1 , 
J 2  = - ~ f (k)  ~ )  

4 

= -2zrA2[1 +(eE/moc2)] 2 ~ [a,aj/(bi+by)] 
i , j = l  

x exp { -  [1/(47r)2][bib/(b~ + bj)](~ + ky2)} 

(15) 

and 

J3 = - ( i /6)f(k)*f(k)*f(k) 

= - i(8zr2/3)A3[ 1 + (eE/moc2) 3] 
4 

× ~.. [aiajag/(bibj + bibk + bjbk)] 
i , j , k =  1 

x e x p { - [  1/(4'rr)2][bibjbk/(b, b i + bib k + bjbk)] 

x ( ~  + ~)}. (16) 

Expressions (14)-(16) clearly show that, in general, 
the higher-order scattering amplitudes have broader 
angular widths compared with the lower-order 
amplitudes and, apart from acceleration-voltage- 
independent constants, the convergency of the series 
(11) is determined by a parameter 

p = A[ 1 + (eE/moc2)] 

-- hi 1 + (eE/moc2)]{2moeE[ 1 + (eE/2moc2)]} - 1/2, (17) 

which decreases with increasing acceleration voltage 
E. It is then expected that for a higher accelerating 
voltage the convergency of the Born series (11) will 
be improved. This is evident from Fig. 1. 

Shown in Fig. 2 are plots of single, double and 
triple scattering amplitudes as functions of the 
momentum transfer q = k - ko, in which ko and k are 
the electron wave vectors for the incident and scat- 
tered electrons, respectively. Fig. 2(a) is calculated 
for 500 keV and a single Cu atom at 0 K. Shown in 
Fig. 2(b) are similar plots, but the calculations have 
been made for 100 keV incident electrons. Both Fig. 
2(a) and Fig. 2(b) show that, while the lower-order 
scattering amplitudes are much larger in comparison 
with higher-order scattering amplitudes for small 
scattering angles or small q (= sin O/a, O being the 
scattering angle), the situation is reversed at larger 
scattering angles. This is because the higher-order 
scattering amplitudes have broader angular widths 
than the lower-order scattering amplitudes. For 
500 keV incident electrons, it is seen in Fig. 2(a) that 
the double scattering amplitude .exceeds the single 
scattering amplitude at approximately 6.0 A-1 and 
the triple scattering amplitude exceeds the single 
scattering amplitude at around 8.0 A-1. For a lower 
acceleration voltage, the situation is more severe. 
Fig. 2(b) shows that for 100 keV the double scat- 
tering amplitude exceeds the single scattering ampli- 
tude at about 4.5/~-1 and the triple scattering 
amplitude exceeds the single scattering amplitude at 
6.0 A -  1. In all cases, the double scattering amplitude 
is seen to have comparable magnitude to the single 
scattering amplitude for q > 2.0 A-~, and the Born 
series is expected to break down and the kinematic 
approximation fails for all beams with q > 2.0 A -  ~. 

Shown in Fig. 3 are variations of the phase shifts 
of the scattering amplitudes by a single Cu atom for 
500 and 100 keV. To a rough approximation, the 
curves may be approximated as linear functions of 
the scattering angle. Detailed studies further show 
that the slope of the curve is approximately propor- 
tional to the atomic number (Glauber & Schomaker, 
1953). 

3. Phase shift and structure determination 

Phase shifts have profound implications for structure 
determinations using electron diffraction. In general, 
we can write the dynamical scattering amplitude for 
a single atom as 

,s(q) = f(q) exp [i f(q)], (18) 

where f(q) is the absolute magnitude of the scattering 
amplitude and f(0) is the phase shift resulting from 
dynamical diffraction events. For electron diffraction 
by an assembly of atoms, e.g. in the case of gas 
diffraction (for a review see Hargittai, 1993), the 
dynamical scattering amplitude is given by 

,~q) = E f ( q ) e x p [ i f ( q ) -  iq'r,] (19) 
i 
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and the intensity distribution of scattered electrons is 

I(q) = Z ~'.f(q)fj(q) exp {i[(~(q) - (j(q)] - iq" (r ;-  rj)}. 
i j (20) 

For gas diffraction, the molecules in the gas are 
randomly oriented and all orientations appear with 
equal probability. The intensity of the scattered elec- 
trons averaged over the random orientations of the 
gas molecules is given by 

2~" rr 

l(q)=(1/47r) f dc~f I(q)sinOdO 
o o 

= ZZf-(q)fj(q){[sin q(ro + 6)/qro] 
i j  

- [s in  q(ro-  6)/qro]}, (21) 

where the phase shift ((q) has been assumed to be a 
linear function of the scattering angle, i.e. 

(,(q) - (j(q) = q6, (22) 

500keV, T=0.0K 
0.02 , , , , , , , 

Single scattering - -  
Double scattering 

/ Triple scattering ..... 
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~ -.  
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.__. 
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0 I 
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q 
(a) 

100keV T---0.0K 
0.02 

Single scattering - -  
, \ Double scattering ..... 
,, 

~"~'~ ,.~'= ~=m E 0.0150.005 0.01 ........... , ......... '..' 

0 
0 1 2 3 4 5 6 7 

(b) 

Fig. 2. Calculated momentum dependence of the single, double 
and triple scattering amplitudes for (a) 500 and (b) 100 keV. The 
unit for the scattering amplitude is A and that for the 
momentum q is A-1 

and ro = [rg- rjl. Expression (21) is of just the form 
that would be given by atom pairs of split distances 
r/j = r o - 8  and r,j = ro + & If the result (21) is inter- 
preted by the kinematic theory assuming a zero 
phase shift, it can lead to an erroneous conclusion 
that bond lengths are split, i.e. rg---,ro+-6 (Glauber & 
Schomaker, 1953). 

For crystal diffraction, the crystal structure factor 
is given by 

Fg = Z f (g )exp[ i (~ (g ) ]exp( ig ' r )  
i 

= ~ ' f (g)exp{ ig ' [r i+ Vg(i(O)]+i/~,(O)}, (23) 
i 

To this linear approximation of the atomic scat- 
tering amplitude phase shift, the intensity maxima in 
a structure map constructed from the absolute mag- 
nitude of the diffracted beams and kinematic phases 
will be shifted by an amount that is proportional to 
Vg(~. When the linear approximation fails, the situa- 
tion is more complicated and some intensity maxima 
that bear no direct relation to the atom positions will 
appear and the structure map will become an 
unfaithful map of the crystal structure. 

4. A numerical example: chlorinated copper 
phthalocyanine 

To illustrate how dynamical diffraction processes 
affect the diffracted-beam amplitudes and therefore 
crystal structure determinations, we now consider an 
example of transmission electron diffraction by a 
chlorinated copper phthalocyanine crystal, 
C32~'~8Cll6CU. The reason for our choice of this 
example is that previously this structure has been 
extensively studied in the context of electron crystal- 
lography (Uyeda, Kobayashi, Suito, Harada & 
Watanabe, 1972; Dorset, Tivol & Turner, 1991; Fan 

T=OK 

500keY - -  
100keY .... 

i . "  
1-" 

~v 30 -'"'"'"" ¢ 

20 " ' " " "  

lO ~ ~  

i i i i 
0 0'.2 0., L 0.'8 1 1'.2 ,., 1.~ 1'.~ 

q 

Fig. 3. Variations of the phase shift of the total scattering ampli- 
tude as a function of q for a single Cu atom and for 100 and 
500 keV. 



764 THE DIRECT PHASING AND FOURIER METHOD 

et al., 1991; Li & Tang, 1985). The unit-cell dimen- 
sions of this crystal are a =  19.62, b = 26.04, c =  
3.76 A and /3 = 116.5 °. The projected structure of 
this crystal along the c axis is shown in Fig. 4, with 
the projected unit-cell parameters being a ' =  a sin/3 
= 17.56 and b' = b = 26.04 A. 

Shown in Figs. 5(a) and (b) are two sets of phase 
variations of certain diffracted-beam amplitudes. In 
Fig. 5(a), all phases of the corresponding structure 
factors are zero; in Fig. 5(b), they are 180 °. The 
additional 90 ° phase shift of the diffracted beams 
with respect to that of the crystal structure factors is 
due to the factor i in (9). The calculations have been 
made based on the multislice formulation (Cowley & 
Moodie, 1957; Goodman & Moodie, 1974), using 
32 768 beams and for 400 keV primary-beam energy. 
The first impression of these variation curves is that 
the phases are roughly linear functions of the crystal 
thickness and the slope of the linear dependence is 
proportional to the order of the reflection. 

It should be pointed out that for small crystal 
thicknesses the phase variations as shown in Fig. 5 
do not result from dynamical diffraction, but rather 
are due to a free-space propagator that has been 
neglected in the phase-object approximation (3). In 
the more sophisticated multislice approach (Cowley 
& Moodie, 1957), (3) is replaced by 

O(x,y,z + Az) = Oo(X,y,z)q(x,y)*e(x,y,Az), (24) 

in which P(x,y,Az) is the Fresnel propagator 
(Cowley, 1975), which describes the propagation of 
the electron wave function from a point at (x,y,z) to 
an (x,y) plane at a distance Az from the source point 
at (x,y,z). Under the usual high-energy small-angle 
approximation, the Fresnel propagator is given by 

p(x,y,dz)=(i/Az,~)exp[_(i,n./dz,~)(x 2 + y2)]. (25) 

In reciprocal space, we have 

J-(kx,kx,z + Az) =Y(kx,ky,z)P(kx,ky, Az), (26) 

°°oo o o 0o0 
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Fig. 4. Projected structure of a chlorinated copper phthalocyanine 
single crystal along the e axis. 

in which 

P(k=,ky,Az) = [1/(27r)2]f p(x,y,Az) 

X e x p [ -  i(k~c + kyy)]dx dy 

= [ 1/(2 rr) 2] exp [(i AzA/4rr)(k2x + ~)],  

(27) 

i.e. the phase variations associated with diffracted 
beams are proportional to Az. For thin crystals, the 
scattering amplitude from a phase object is propor- 
tional to the kinematic or Born scattering amplitude 
which is real. Following (26), the phase shift of the 
diffracted beam is then proportional to the crystal 
thickness. 

Shown in Fig. 6 are phase variation curves similar 
to those in Fig. 5, but the variations are corrected for 
the free-space propagator (27). Had the kinematic 
approximation been satisfied, all curves in Fig. 6 
would have been horizontal straight lines. Although 
the curves in Fig. 6 show deviations from the perfect 
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and 0,28 diffracted beams for 400 keV and a single C32NsC1,6Cu 
crystal. 
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kinematic behaviour at large thicknesses, the devia- 
tions are seen to gain appreciable ma~gnitude only for 
a crystal thickness greater than 50 A. For a crystal 
thicker than this, the high-index reflections 0,22 and 
0,28 are seen to begin to deviate appreciably from 
the horizontal line and dynamical effects are 
expected to become important. 

Shown in Fig. 7 are the corresponding variation 
curves of the normalized beam intensity, i.e. lg/] Vgt] 2. 
Had the kinematic approximation been exactly satis- 
fied, the normalized intensities for all beams would 
all have been horizontal lines. Again, it is seen that, 
while this perfect kinematic behaviour is not exactly 
reproduced, deviation from this behaviour is not 
very severe for a small crystal thickness. 

It should be pointed out that Figs. 5, 6 and 7 have 
been calculated for beams of appreciable amplitudes. 
As a comparison, some phase and normalized beam- 
intensity variation curves for three weak beams have 
been shown in Figs. 8 and 9 as a function of crystal 
thickness. The relevant structure factors and those 
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Fig. 6. Similar phase variations as Fig. 5 but the phase variation 

resulting from the Fresnel propagator is corrected. 

associated with Figs. 6 and 7 are given in Table 1. 
The kinematic behaviour is seen to be violated 
appreciably for a crystal thickness as small as 20 A. 
This is because, while the direct kinematic routes 
from the incident beam to these weak beams are 
almost complete destructive, the alternative indirect 
routes that involve multiple diffraction events contri- 
bute more to the final beam amplitude. This means 
that multiple scattering events dominate over the 
single scattering processes and, consequently, the 
weak beams are more dynamical in nature than the 
low-order strong beams. 

The ult~.mate goal of structure determinations is to 
find the three-dimensional atomic coordinates in real 
space. For high-energy electron diffraction, however, 
the incident electron probe is not very sensitive to the 
atomic coordinates along the beam direction. Elec- 
tron diffraction studies thus usually aim to construct 
a series of faithful maps of the projected crystal 
structures along different orientations. A three- 
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Fig. 7. Normalized beam intensities of  (a) 0,2, 0,4, 0,16, 0,24, (b) 
0,8, 0,12, 0,22 and 0,28 diffracted beams as against the crystal 
thickness. Calculations are made for 400 keV and a single 
C32NsClI6Cu crystal. 
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dimensional map can then be obtained by combining 
these two-dimensional maps. In electron diffraction, 
the best possible map to construct is the electrostatic Reflection 

020 potential map, like the one shown in Fig. 10 for a 040 
C32N8C116Cu single crystal projected along the c axis. 060 

080 Experimentally, if the kinematic approximation is 0,12,0 
applied, the absolute amplitude of the diffracted 0,14,0 
beam is proportional to the absolute magnitude of 0,16,0 
the relevant crystal structure factor via (1), i.e. Ig u2 = 0,18,0 

0,22,0 
~-g o~ ]Vg. In a diffraction experiment, the phases 0,24,0 
associated with the diffracted beams are lost. In 0,28,0 
principle, however, these phases may be restored 
using direct methods (Woolfson, 1961). Assuming 
that the restored phases from the direct method are 
perfect, i.e. they are identical to the phases of the 
corresponding crystal structure factors, we can then 
construct a 'structure map' as follows: 

S(x,y) = ~Jgl/Zexp(idp~)exp(ig.r) ,  (28) 
g 
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Fig. 8. Propagator-corrected phase variations for 0,6, 0,14 and 
0,18 diffracted beams and 400 keV. 
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Table 1. Structure factors 

Amplitude (A-~) Phase (o) 

0.010792 0.000 
0.011677 0.000 
0.001713 180.0 
0.013649 180.0 
0.017279 180.0 
0.001510 180.0 
0.008864 0.000 
0.001460 180.0 
0.009597 180.0 
0.033634 0.000 
0.005763 180.0 

in which ~bg is the restored phase of the gth reflec- 
tion. Given the validity of the kinematic approxi- 
mation, this map is proportional to the projected 
potential map as shown in Fig. 10, and the two- 
dimensional atomic coordinates are revealed as 
intensity maxima in the map via the Poisson relation 
(Spence, 1993). 

Alternatively, if the dynamical phases of the dif- 
fracted beams are available, as in the case of electron 
holography (Tonomura, 1987; Lichte, 1991), an 
'electron-density map' can be constructed: 

D(x,Y)= lZJ-gexp(ig'r)] 2, (29) 
g 

in which ~g is the complex amplitude of the gth 
diffracted beam. For both the structure and electron- 
density maps, the summation over g is carried out 
over a limited number of beams. The 'resolution' of 
a map is defined as the inverse of the maximum q 
value involved. For example, if a map is constructed 
using reflections with a maximum q value of 2.0 A -  ~, 
the resolution for such a map is then 0.5 A. 

Shown in Figs. 1 l(a) and (c) are calculated [001] 
electron-density maps and in Figs. l l(b) and (d) the 
corresponding structure maps for a single crystal of 
C32NsCl~6Cu and 400keV primary-beam energy. 
Reflections with a maximum q value of 1.0 A-1 are 
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Fig. 10. Projected potential map of  a cholorinated copper phthalo- 
cyanine single crystal along the c axis. 
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used in constructing these maps. Figs. 1 l(a) and (b) 
are calculated for a crystal thickness t = 107 A, and 
Figs. l t(c) and (d) are calculated for a crystal 
thickness t = 301 A. Shown in Fig. 12 are similar 
maps but with map resolution 0.5 A. A general 
conclusion that may be drawn from these maps is 
that the electron-density map seems to be a more 
faithful representation of the crystal structure than 
the corresponding structure map for large crystal 
thicknesses. 

It should be pointed out that in general the close 
resemblance of the electron-density map to the pro- 
jected potential map cannot be taken as an 
indication that the kinematic approximation is valid, 
as can be seen from the apparent failure of the 
corresponding structure map to resemble the crystal 
potential map (see Fig. 1 ld or Fig. 12d). The devia- 
tion of the structure map from that of the projected 
potential is purely due to multiple scattering effects 
on the absolute magnitude of the diffracted beams 
(since we have assigned the kinematic phases to the 
diffracted beams). The reason for the tendency for 
the electron-density map resulting from a thick crys- 
tal to bear a resemblance to the projected potential is 

that in general the electron wave function in the 
crystal is dominated by a small number of Bloch 
waves, in particular the tightly bound Bloch waves 
(Kambe, 1982). For perfect crystals, the electron- 
density map is composed of contributions from these 
Bloch waves, with the free Bloch waves contributing 
only to a slowly varying background and the tightly 
bound Bloch waves that are localized around the 
atom sites contributing to the density-map contrast. 

To further demonstrate the point, we show in Fig. 
13 a series of four electron-density maps, calculated 
at crystal thicknesses of 21.5, 109.0, 215.0 and 
430.0 A, respectively, in Figs. 13(a), (b), (c) and (d). 
Reflections of up to 0.2 A have been used for calcu- 
lating these maps. It is seen that, for a crystal as 
thick as 215 A, the correct structure can still be 
clearly identified from the electron-density map (Fig. 
13c). For an even thicker crystal of 430 A (Fig. 13d), 
the map is seen to be blurred compared with the 
maps constructed for a thinner crystal. Nevertheless, 
the map as shown in Fig. 13(c) still provides a fair 
clue to the correct atomic configuration. The 
deterioration of the density map with increasing 
crystal thickness is due to the fact that the tightly 
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bound Bloch waves are more strongly absorbed than 
the free Bloch waves. As a consequence, contri- 
butions from free Bloch waves become more and 
more important for increasing crystal thickness. 
These free Bloch waves carry more information 
about the electron distribution in between nuclei, 
rather than the nuclei positions, and deteriorates the 
electron-density map. 

As previously mentioned, for a large crystal 
thickness, dynamical diffraction processes will intro- 
duce phase shifts to the diffracted beams and the 
intensity maxima in the structure maps may not 
coincide with atom positions. This situation is clearly 
demonstrated in Figs. l l(d) and 12(d) for the 1.0 
and 0.5 A structure maps. In both maps, it is seen 
that many of the intensity peak positions have 
shifted away from the true atom positions and some 
additional intensity maxima that bear no relation to 
the crystal structure have appeared. These types of 
structure maps do not therefore provide faithful 
representation of the projected crystal potential and 
should not be used for direct crystal structure deter- 
mination. 

For a small crystal thickness, such as the one used 
for calculating Figs. 1 l(b) and 12(b), many of the 

low-order diffracted beams are expected to behave 
kinematically. A low-resolution map that uses only 
low-order reflections is then expected to bear close 
resemblance to the projected potential, except that 
the map is blurred compared with the projected 
potential map. One example is provided by the 
1.0 A-resolution structure map as shown in Fig. 
l l(b), which is seen to resemble the crystal structure 
fairly well. On the other hand, a higher-resolution 
map, such as the 0.5 A-resolution structure map 
shown in Fig. 12(b), tends to have some intensity 
maxima that bear no direct relation to the maxima in 
the corresponding potential map. This is because the 
higher-order diffracted beams are affected more 
severely by the dynamical diffraction effects. 

Previously, computer-simulated electron-micro- 
scope images of chlorinated copper phthalocyanine 
crystals were compared with weak-phase-object 
images intuitively by O'Keefe, Fryer & Smith (1983). 
It was found that there exists a considerable range of 
focus and thickness where intuitive image interpreta- 
tion is possible. This conclusion is consistent with 
our results as presented in Fig. 13. Similar results 
have also been obtained by Ishizuka & Uyeda 
(1977), who found that a linear relationship between 
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the probability distribution of electrons and the 
specimen structure holds for a crystal having a 
thickness of less than 150A and for 100keV, 
whereas the kinematic approximation breaks down 
for a much smaller crystal thickness. They suggested 
that this phenomenon should be compared to the 
action of a convex lens positioned at each atom 
location, and this is just a different way of describing 
the phenomenon of electron wave channelling along 
atom strings (see also Amelinckx & Van Dyck, 
1993). The use of a dynamical Patterson function has 
also been discussed by Cowley & Moodie (1959), 
who concluded that the range of crystal thicknesses 
for which single-crystal structure analysis is feasible 
is not limited to the range of validity of the kine- 
matic approximation. Again, this results from chan- 
nelling effects. 

5. Discussion 

For an ordinary transmission electron microscope, 
the point-to-point resolution is typically about 2 A,. 
As discussed in the previous sections, many reflec- 
tions with this order of resolution may be described 

using the kinematic approximation. A high- 
resolution electron microscopy (HREM) image 
obtained using relatively small angle diffracted 
beams will therefore provide fairly accurate kine- 
matic phases and amplitudes for these beams. On the 
other hand, a diffraction pattern (which is not very 
sensitive to the objective-lens abberations) contains 
higher-resolution information when compared with a 
HREM image. The advantage of combining image 
and diffraction technique lies in the possibility that 
direct phase extension may be made to the higher- 
index diffracted beams observed in a diffraction 
pattern starting from the kinematic phases of low- 
index beams provided by a HREM image. For the 
higher-order beams, which are affected by dynamical 
diffraction, a second important fact that contributes 
to the success of the direct phasing and Fourier 
method begin to play its role. This fact is well 
established in the X-ray crystallography community 
and has been recently re-stated by Dorset (1991) in 
the context of electron crystallography, i.e. for the 
determination of phases using direct methods, main- 
taining groups of Ig in respective domains of large 
and weak values is much more important than is the 
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Fig. 13. Calculated electron-density maps for a crystal thickness of (a) 21.5, (b) 109.0, (c) 215.0 and (d) 430.0 A. Reflections with q up to 
5.0 A-1 are used. 
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strict hierarchical ordering of the beam intensity. The 
implication here is that, although the kinematic 
approximation is not a very accurate approximation 
for high-order reflections, so long as multiple scat- 
tering events do not affect the grouping of strong 
and weak beams, correct phases for the high- 
resolution reflections may still be obtained using the 
method of phase extension. Given correct phases and 
amplitudes of low-order reflections, more or less 
correct phases of higher-order reflections but dyna- 
mically modified absolute beam amplitudes, a last 
but not least fact begins to contribute to the success 
of the method of Fourier synthesis, i.e. a correct 
structure map depends on the phase much more 
sensitively than on the absolute beam amplitude. As 
stated most clearly by Schenk (1991): 'Even when the 
structure factors are all set to one or taken from 
another crystal the desired structure will show up in 
a Fourier summation, provided the correct phases 
have been used. However, wrong phases and correct 
amplitudes reveal no structure'. 

6. Concluding remarks 

In summary, in this paper we have shown that the 
kinematic approximation for electron diffraction by 
a compound crystal containing heavy atoms is not 
rigorously valid. We have shown, however, that in 
reciprocal space and for a thin crystal many of the 
low-order diffracted beams behave kinematically. 
Low-resolution structure maps based on these low- 
order diffracted beams are shown to provide a fairly 
faithful representation of the projected crystal 
potential map. On the other hand, structure maps 
constructed using higher-order reflections are shown 
to be affected more severely by dynamical diffraction 
effects. It is concluded that a low-resolution structure 
map is usually a more reliable map of the crystal 
structure than a high-resolution map. 

In cases when the dynamical phases are available, 
as in the case of electron holography, an electron- 
density map can be constructed rather than a struc- 
ture map. We have shown that for a large crystal 
thickness the electron-density map is usually a more 
faithful map of the crystal structure than the struc- 
ture map. The drawbacks of the electron-density 
maps are that they may not be able to reveal all atom 
positions at one crystal thickness, and many tech- 
niques commonly used for processing the kinematic 
structure map, such as Fourier methods and 
heavy-atom methods, cannot be used to improve the 
dynamical electron-density map. 

For a moderately thick crystal where certain 
dynamical effects are present, the success of the 
method of phase extension and Fourier synthesis for 
the determination of crystal structure is mainly due 

to three facts. Firstly, for small-angle scattering, the 
kinematic approximation is fairly good. A Fourier 
transform of a HREM image then provides rather 
accurate values for both phases and absolute ampli- 
tudes of the selected diffracted beams used for 
forming the HREM image. Secondly, the procedure 
of phase extension does not depend sensitively on the 
absolute diffracted-beam intensities but rather on the 
right grouping of the beam intensities. More or less 
correct kinematic phases may then be obtained from 
the procedure of phase extension for many of the 
large-angle diffracted beams. Thirdly, a correct struc- 
ture map depends much more sensitively on the 
phases than on the absolute amplitudes of the struc- 
ture factors, i.e. a correct structure map that shows 
up the desired structure may be obtained even 
though some absolute amplitudes of large-angle dif- 
fracted beams are not strictly kinematic. 
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Abstract 

The second representation of a triplet invariant 
[Giacovazzo (1977). Acta Cryst. A33, 933-944] is a 
collection of special quintets. In the present paper, 
the triplet is embedded in many more additional 
quintets obtained in a special way by symmetry 
operations on the indices of the structure factors. 
The method of joint probability distribution func- 
tions has been used to derive a formula for estimat- 
ing triplets via the information contained in the basis 
and in the cross terms of the quintet invariants. 
The P10 formula [Cascarano, Giacovazzo, Camalli, 
Spagna, Burla, Nunzi & Polidori (1984). Acta Cryst. 
A40, 278-283] is a special case of the new formula, 
here called P~3. The new expression has been applied 
to practical cases. 

Symbols and abbreviations 

C - ( R , T )  Symmetry operator. R is the 
rotation component, T is the 
translation component. 

Eh = Rhl exp (i~0h) Normalized structure factor. 

43 = ~Oh, + ~0h2 + ~0h3 With hi + h2 + h3 = 0. 

© 1994 International Union of Crystallography 
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m 
N 

Dl(x) = Ij(x)/Io(x) 

Number of symmetry operators. 
Number of atoms in the 
prihaitive unit cell. 
Ratio of the two modified Bessel 
functions of order 1 and 0, 
respectively. 

Introduction 

In accordance with Giacovazzo (1977), the second 
representation {~}2 of the triplet phase invariant q~3 
is the collection of special quintets 

~2 - ~3 + ~kR,-- ~kR,, i = 1,....,m, (1) 

where k is a free vector in reciprocal space. The 
collection of the basis and cross magnitudes of the 
various quintets ~b2 is called the second phasing shell 
of 43: 

{B}2 = {Rh,,Rh2,Rh3,Rk,Rh,+__kR,,Rh2+kR,,Rh3+_kR,}, 

i=  1,...,m. 

A formula was derived (Cascarano, Giacovazzo, 
Camalli, Spagna, Burla, Nunzi & Polidori, 1984) that 
can be used to estimate q~3 given the moduli in {B}2: 

P(tP3I{B}2) "" [27rlo(G)]-lexp(Gcos @3), 
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